Simulation of Conjugate Heat Transfer in Large-scale Cryogenic Environment Chambers Based on Numerical Simulation Methods

YANG Guohui, LU Di, WANG Yanan, ZHAN Dengyi, ZHENG Zijian, ZHU Yuhe, ZHAO Hongli

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 123-134.

PDF(29934 KB)
PDF(29934 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 123-134. DOI: 10.7643/ issn.1672-9242.2025.11.013
Key Projects Equipment

Simulation of Conjugate Heat Transfer in Large-scale Cryogenic Environment Chambers Based on Numerical Simulation Methods

  • YANG Guohui1, LU Di1, WANG Yanan1, ZHAN Dengyi2, ZHENG Zijian3, ZHU Yuhe1,*, ZHAO Hongli2,*
Author information +
History +

Abstract

The work aims to investigate the cooling performance of a cryogenic environment chamber containing multiple heat sources and significant thermal mass. A numerical model of a large-scale cryogenic environment experiment chamber was established based on numerical simulation and equivalent parameter methods. The distribution characteristics of the flow field and temperature field inside the chamber at different supply air temperatures (ranging from -70 ℃ to -120 ℃) were analyzed. The results indicated that: as the supply air temperature decreased (from -70 ℃ to -120 ℃), the flow field within the chamber became more uniform, the circulating air volume increased, and the flow uniformity below the deflector plate improved significantly. Simultaneously, the temperature field distribution also showed a trend toward greater uniformity with the decreasing supply air temperature (from -70 ℃ to -120 ℃). Specifically, the temperature difference (Δt1) within the experimental environment below the deflector plate decreased from 2 ℃ to 0.8 ℃. Due to the excellent thermal insulation properties of the chamber, the surface temperature difference (ΔtS) of the test items inside the chamber remained below 1 ℃ across all tested supply air temperatures. In conclusion, the intake air temperature significantly affects the flow field and temperature field distribution in the cryogenic environment chamber. As the intake air temperature decreases, the stagnant airflow area above the deflector plate increases, but the flow uniformity is improved. The temperature uniformity of the experimental environment below the deflector plate is also improved, and the airflow in the bottom return air duct away from the fan side becomes more uniform. Lowering the intake air temperature reduces the airflow velocity in the supply duct, resulting in a decrease in the system's circulating airflow volume.

Key words

cryogenic environment chamber / temperature uniformity / flow field distribution / conjugate heat transfer / air cooling technology / numerical simulation

Cite this article

Download Citations
YANG Guohui, LU Di, WANG Yanan, ZHAN Dengyi, ZHENG Zijian, ZHU Yuhe, ZHAO Hongli. Simulation of Conjugate Heat Transfer in Large-scale Cryogenic Environment Chambers Based on Numerical Simulation Methods[J]. Equipment Environmental Engineering. 2025, 22(11): 123-134 https://doi.org/10.7643/ issn.1672-9242.2025.11.013

References

[1] 郭宪民, 徐泽鹏, 赵硕, 等. 空气制冷机的研究和发展[J]. 制冷学报, 2022, 43(4): 44-58.
GUO X M, XU Z P, ZHAO S, et al.Review on Research and Development of Air Cycle Refrigeration System[J]. Journal of Refrigeration, 2022, 43(4): 44-58.
[2] 段炀, 张华, 盛健, 等. 逆布雷顿空气制冷系统研究进展[J]. 制冷学报, 2022, 43(6): 1-10.
DUAN Y, ZHANG H, SHENG J, et al.Review of Reverse Brayton Cycle Air Refrigeration System[J]. Journal of Refrigeration, 2022, 43(6): 1-10.
[3] 王少鹏, 张益诚, 陈良, 等. 基于空气制冷的船舶冷库实验研究[J]. 船海工程, 2025, 54(2): 175-180.
WANG S P, ZHANG Y C, CHEN L, et al.Experimental Study on the Air Refrigeration System for Shipboard Cold Storage[J]. Ship & Ocean Engineering, 2025, 54(2): 175-180.
[4] 郝杰, 王琪, 冶文莲, 等. 小型逆布雷顿低温空气制冷机的初步实验研究[J]. 真空与低温, 2021, 27(3): 249-255.
HAO J, WANG Q, YE W L, et al.Preliminary Experimental Research on a Cryogenic Reverse BRAYTON Air Refrigerator[J]. Vacuum and Cryogenics, 2021, 27(3): 249-255.
[5] 郑俊, 李吉冬, 许未晴, 等. 基于逆布雷顿循环的空气制冷机的优化与性能分析[J]. 制冷技术, 2024, 44(3): 44-51.
ZHENG J, LI J D, XU W Q, et al.Optimization and Performance Analysis of Air Cooler Based on Inverse Brayton Cycle[J]. Chinese Journal of Refrigeration Technology, 2024, 44(3): 44-51.
[6] 宋书建, 陈双涛, 周晓聪, 等. -120℃空气制冷深冷冰箱样机开发及性能测试[J]. 低温与超导, 2024, 52(7): 1-6.
SONG S J, CHEN S T, ZHOU X C, et al.Development and Performance Testing of a Prototype of Refrigerator at -120 ℃[J]. Cryogenics & Superconductivity, 2024, 52(7): 1-6.
[7] 唐森飞. 船舶制冷和空气调节装置的节能优化设计[J]. 船舶物资与市场, 2024, 32(11): 100-102.
TANG S F.Energy-Saving Optimization Design of Ship Refrigeration and Air Conditioning Device[J]. Marine Equipment/Materials & Marketing, 2024, 32(11): 100-102.
[8] 刘坤, 张保军, 岳磊, 等. 综合气候环境试验室载冷剂方案选择研究[J]. 装备环境工程, 2016, 13(5): 105-110.
LIU K, ZHANG B J, YUE L, et al.Research on the Selection of Refrigerants Used in Combined Climatic Environmental Chambers[J]. Equipment Environmental Engineering, 2016, 13(5): 105-110.
[9] 刘海燕, 马建军, 张惠. 大型气候环境实验室空气处理系统方案探讨[J]. 装备环境工程, 2014, 11(5): 107-113.
LIU H Y, MA J J, ZHANG H.Discussion on Design of the Air Handing System in Large Climatic Environmental Test Laboratory[J]. Equipment Environmental Engineering, 2014, 11(5): 107-113.
[10] 唐庆云, 郑南飞, 张洪彬, 等. 电子元器件环境适应性评价方法研究[J]. 环境技术, 2022, 40(6): 40-45.
TANG Q Y, ZHENG N F, ZHANG H B, et al.Research on the of Environmental Adaptation Evaluation for Electronic Components[J]. Environmental Technology, 2022, 40(6): 40-45.
[11] 许翔, 张众杰, 凤蕴, 等. 汽车环境适应性试验综述[J]. 装备环境工程, 2013, 10(1): 61-65.
XU X, ZHANG Z J, FENG Y, et al.Review of Automobile Environmental Worthiness Test[J]. Equipment Environmental Engineering, 2013, 10(1): 61-65.
[12] 郭旭峰, 陶乐仁. 液氮喷淋流态化速冻系统及冷冻性能研究[J]. 工程热物理学报, 2003, 24(3): 475-477.
GUO X F, TAO L R.Investigation on Freezing Characteristic of LN2-Spraying Fluidized Cooling System[J]. Journal of Engineering Thermophysics, 2003, 24(3): 475-477.
[13] 高霞, 石甲斌, 张峰, 等. 医用冷藏箱温湿度控制的设计改进[J]. 制冷与空调, 2024, 24(11): 47-49.
GAO X, SHI J B, ZHANG F, et al.Design Improvement on Temperature and Humidity Control of Medical Refrigerator[J]. Refrigeration and Air-Conditioning, 2024, 24(11): 47-49.
[14] 池耀田. 城轨车辆的试验设施[J]. 环境技术, 2011, 29(5): 6-11.
CHI Y T.Testing Facilities for Mass Transit Vehicle[J]. Environmental Technology, 2011, 29(5): 6-11.
[15] 唐虎, 李喜明. 飞机气候试验[J]. 装备环境工程, 2012, 9(1): 60-65.
TANG H, LI X M.Climatic Test of Aircraft[J]. Equipment Environmental Engineering, 2012, 9(1): 60-65.
[16] 马建军, 孙侠生, 李喜明. 环境实验室温度均匀性的数值分析研究[J]. 装备环境工程, 2014, 11(1): 48-53.
MA J J, SUN X S, LI X M.Numerical Analysis of Temperature Uniformity for Climatic Test Chamber[J]. Equipment Environmental Engineering, 2014, 11(1): 48-53.
[17] 马建军, 刘海燕, 吴敬涛, 等. 大型综合气候实验室基础环境模拟系统设计[J]. 装备环境工程, 2020, 17(6): 24-33.
MA J J, LIU H Y, WU J T, et al.Design of Primary Climatic Environment Simulation System for Large Comprehensive Climatic Environment Test Laboratory[J]. Equipment Environmental Engineering, 2020, 17(6): 24-33.
[18] 安毓辉, 刘志兵, 陈晓东. 极地气候环境实验室设计[J]. 船舶, 2023, 34(1): 185-192.
AN Y H, LIU Z B, CHEN X D.Design of Polar Climate Environment Laboratory[J]. Ship & Boat, 2023, 34(1): 185-192.
[19] 张昭, 唐虎, 成竹. 军用飞机实验室气候环境试验项目分析[J]. 装备环境工程, 2017, 14(10): 87-91.
ZHANG Z, TANG H, CHENG Z.Laboratory Climatic Test Items of Military Aircraft[J]. Equipment Environmental Engineering, 2017, 14(10): 87-91.
[20] 刘冠华, 王国权, 赵诚. 某大型高低温环境模拟舱数值模拟及试验研究[J]. 计算机仿真, 2025, 42(2): 322-329.
LIU G H, WANG G Q, ZHAO C.Numerical Simulation and Experimental Study of Large-Scale High/Low Temperature Environment Simulation Cabin[J]. Computer Simulation, 2025, 42(2): 322-329.
[21] 张新太, 孙江平. 某大型环境舱流场及温度场仿真计算[J]. 科技视界, 2017(7): 14-15.
ZHANG X T, SUN J P.Simulation Calculation of Flow Field and Temperature Field in a Large Environmental Cabin[J]. Science & Technology Vision, 2017(7): 14-15.
[22] LI K, LIU W K, WANG J, et al.An Intelligent Control Method for a Large Multi-Parameter Environmental Simulation Cabin[J]. Chinese Journal of Aeronautics, 2013, 26(6): 1360-1369.
PDF(29934 KB)

Accesses

Citation

Detail

Sections
Recommended

/